Министерство Здравоохранения Республики Узбекистан
Научно-исследовательский институт эпидемиологии
микробиологии и инфекционных заболеваний
Назад
uz ru en

1. Знаете ли Вы, что избавиться от глистов навсегда просто невозможно! Есть...

2. Знаете ли Вы, что при глистной инвазии происходит дефицит макро и микро...

3. Знаете ли Вы, что упущенное в детстве лечение некоторых глистных инвазий,...

Пред. год 2017 След. год
     
Пн Вт Ср Чт Пт Сб Вс
30 31 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 1 2 3

3D-печать в медицине

13.12.2017

Рекомендации FDA для 3D-печати в медицине

4 декабря 2017 года Управление США по контролю за пищевыми продуктами и лекарственными средствами (FDA) выпустило новые рекомендации по созданию медицинских моделей с помощью 3D-принтеров. В руководстве подробно рассмотрены аспекты проектирования и испытания моделей, а также требования к их качеству.

Хотя трехмерная печать относится к относительно новым технологиям, она уже нашла широкое применение в клинической практике – например, ее используют для воссоздания точных копий сложных анатомических структур и имитаций хирургических операций. Заметив стремительную эволюцию этой технологии, FDA выпустило специальные рекомендации, чтобы помочь производителям более эффективно выводить на рынок 3D-печатные модели.

Пример 3D-печати части черепа

В рекомендациях, разработанных на основе совместного семинара FDA с группой независимых экспертов RSNA в области 3D-печати от 31 августа 2017 года, основное внимание уделяется техническим аспектам 3D-печати.

Рекомендации включают разделы по дизайну и процессу производства, испытанию моделей и составлению инструкций. В разделе производственного процесса рассматриваются технические аспекты 3D-печатных моделей. При создании моделей на основе изображений, например, полученных при КТ-сканировании, должны учитываться минимальное качество изображения и его разрешение, алгоритмы обработки изображений, которые могут изменять размеры модели по сравнению с реальными органами, а также сохранность и определимость анатомических ориентиров, используемых для адаптации модели.

В разделе по испытанию моделей приводятся требования к их описанию, результатам механических испытаний, измерению размеров, характеристикам материала, стерилизации и биосовместимости. Согласно третьему разделу, каждое устройство должно иметь инструкцию, где будут указаны идентификатор пациента, назначение модели и его окончательный дизайн, а также предупреждение о необходимости предварительного обследования пациента для исключения любых изменений, которые могут отличать модель от реальной анатомической структуры.

Печать мобильного детектора инфекций

В октябре 2017 года группа американских инженеров и ученых разработала новый комплекс для диагностики инфекционных заболеваний «на местах», в которой в качестве детектора используется обычный мобильный телефон и диагностический чип размером с кредитную карточку. Решение создано с использованием технологий 3D-печати.

На 3D-принтере напечатали мобильный детектор инфекций

Низкая стоимость, портативность, а также использование обычного мобильного телефона в качестве детектора делает этот диагностический комплекс незаменимым для диагностики инфекционных заболеваний в условиях ограниченных ресурсов или когда результат диагностики нужен немедленно. Интеграция диагностической платформы с современными мобильными коммуникационными системами позволит осуществлять персонализированное лечение пациентов и мониторинг эпидемиологической ситуации.

При этом время получения результатов диагностики сравнимо с временем проведения аналогичных тестов в условиях стационарной лаборатории — около 30 минут. Для сбора и интерпретации в режиме реального времени изображений ферментной умножающей реакции, которая осуществляется в кремниевом микрофлюидном чипе, служащем для визуального отображения результатов тестов, используется обычный смартфон.

Сам комплекс состоит из обычного смартфона и портативного гнезда-подставки, напечатанной на 3D-принтере и содержащей оптико-электронную «начинку», а также специальный интерфейс для камеры смартфона. Работающее в смартфоне приложение осуществляет сбор результатов проведенных с помощью микрофлюидного чипа тестов и данных о пациенте, которые затем передаются в облачную базу данных.

В ходе демонстрационных испытаний комплекс был использован для качественного и количественного анализа в капли крови инфекций, вызывающих заболевания органов дыхания у лошадей – лихорадки Зика, лихорадки Денге и лихорадки Чикунгунья.

Роботизированная рука, заменяющая сурдопереводчика

В августе 2017 года СМИ сообщили о разработке аспирантов Антверпенского университета (Бельгия), которая сможет облегчить жизнь глухих людей. С помощью 3D-принтера молодые ученые изготовили роботизированную руку, способную выполнять роль сурдопереводчика. Изобретение получило название ASLAN (Antwerp’s Sign Language Actuating Node).

Сурдопереводчики зачастую в дефиците, вот почему и было решено создать недорогую автоматизированную систему, которая сможет переводить текст на язык жестов.

Распечатанная на 3D-принтере роботизированная рука заменит сурдопереводчика

« Скажем, глухому человеку нужно явиться в суд, или же слабослышащий студент присутствует где-то на занятиях. Вот ситуации, в которых людям с проблемами слуха требуются сурдопереводчики, но нередко бывает так, что этих специалистов трудно быстро найти. В подобных обстоятельствах недорогая система, такая как ASLAN, может стать решением проблемы, — рассказывает профессор Антверпенского университета Эрвин Смет (Erwin Smet), слова которого приводит издание Medgadget.[3] »
« Я говорил с друзьями о нехватке сурдопереводчиков в Бельгии, особенно во Фландрии, где нужны специалисты, знающие фламандский жестовый язык. Нам захотелось решить проблему. Еще мне нужен был проект по робототехники для моей диссертации, так что мы совместили две задачи, — дополняет Стейн Хайс (Stijn Huys), один из создателей роботизированного сурдопереводчика. »

Собранная изобретателями роботизированная рука состоит из 25 пластиковых деталей, распечатанных на 3D-принтере и приводится в действие с помощью 16 сервоприводов, за управление которыми отвечает платформа Arduino, сообщает Tech Crunch. В планах разработчиков - система с двумя роботизированными руками и лицом для передачи эмоций.

Пока существует только опытный образец устройства, но энтузиасты намерены довести проект до конца и сделать материалы своей работы общедоступными, чтобы желающие смогли самостоятельно изготовить робота-сурдопереводчика.

Печать искусственного сердца

В июле 2017 года Швейцарский федеральный технологический институт Цюриха (ETH Zurich) представил искусственное сердце, созданное при помощи трехмерной печати. На момент анонса выполненное из силикона изделие было далеко от стадии коммерческой готовности.

Искусственное сердце весом 390 граммов и объемом 679 кубических сантиметров напечатано на 3D-принтере методом литья по выплавляемым моделям. Левый и правый желудочки разделены не перегородкой, а специальной камерой, наполненной сжатым воздухом. Надуваясь и сдуваясь, эта камера имитирует сокращение мышц человеческого сердца и качает кровь.

К моменту демонстрации искусственного сердца оно поддерживает лишь 3000 ударов, то есть может работать от 30 до 45 минут. Для проверки работы сердца ученые использовали передовую тестовую среду, имитирующую сердечно-сосудистую систему человека, и жидкость, имеющую сравнимую с кровью вязкость. Функционирование приспособления запечатлели на видео.

« Наша цель — создать искусственное сердце, которое по размерам, форме и функциям было бы сопоставимо с человеческим", — говорит Николас Корс (Nicholas Cohrs), участник исследовательской группы, занятой в реализации проекта. — Это была проверка технической осуществимости. Наша задача заключалась не в том, что создать сердце, готовое к имплантации, а в том, чтобы думать о новом направлении разработки искусственных сердец. »

К 2017 году от сердечной недостаточности страдает около 26 млн человек. Большинство из них безнадежно ждут доноров, которые бы обеспечили им новое сердце. Таким пациентам устанавливают специальные кровяные насосы, которые облегчают работу сердца, однако они могут вызывать серьезные осложнения и не предоставляют пациентам пульс.

Печать яичников

В мае 2017 года стало известно о 3D-печати яичников, которые позволили бесплодным мышам рожать. Ученые намерены тестировать разработку на людях.

Ученые Северо-западного Университета Чикаго создали искусственный яичник, позволяющий полностью восстановить репродуктивную функцию. В ходе эксперимента бесплодной лабораторной мыши был имплантирован протез, созданный с помощью трехмерной печати. Впоследствии мышата (трое из семи) смогли питаться молоком матери и получить здоровые пометы.

Мышь, появившаяся при помощи искусственных яичников, напечатанных на 3D-принтере

Биопротезы яичников состоят из пористого каркаса из желатиновых чернил, который заполнен фолликулами — крошечными содержащими жидкость мешочками, где хранятся незрелые яйцеклетки. Организм мыши-реципиента фактически координировал развитие тканей яичников, и поток крови через поры помог превратить имплантированную структуру в функциональный биопротез.

Впрочем, стоит отметить, что был напечатан не весь яичник целиком, так как он слишком сложный орган. Ученые создали соединительнотканную основу яичника: принтер заряжали желатином, который получали из коллагена, одного из главных белков соединительной ткани – коллаген был в той форме, в которой он обычно присутствует в яичниках животных. Затем в полученную (напечатанную) желатиновую основу погружали мышиные фолликулы с яйцеклетками внутри.

Пока неясно, подойдет ли такой протез человеку, так как женские фолликулы намного больше и растут быстрее. Однако ученые обещают провести исследования, направленные на развитие идеи в человеческом направлении.[6]

« Целью проекта является восстановление фертильности и эндокринного здоровья молодых пациенток, больных раком, которые были стерилизованы во время лечения рака яичников, — заявила в интервью профессор Северо-Западного университета в Чикаго Тереза Вудруф.­ »

Напечатанное на 3D-принтере сердце на чипе

В конце октября 2016 года исследователи Гарвардского университета сообщили о создании первого в мире сердца на чипе, напечатанного на 3D-принтере. Новая разработка позволит проводить связанные с работой сердца эксперименты без участия подопытных людей и животных, говорится на сайте университета.

Результаты самого исследования, проведенного учеными Гарвардской школы инженерного проектирования (Harvard John A. Paulson School of Engineering and Applied Sciences) и прикладных наук и Института биотехнологий им. Виза (Wyss Institute for Biologically Inspired Engineering), опубликованы в журнале Nature Materials.

Сердце на чипе выполнено из полупрозрачного синтетического материала, имитирующего структуру и функции сердечной ткани. В устройстве располагаются микроскопические датчики, способные отслеживать биение при воздействии на чип различных лекарственных средств и токсинов, выделяемых различными болезнетворными микроорганизмами.

Напечатанный на 3D-принтере орган не может служить имплантантом для человека, а предназначен лишь для проведения научных исследований. Благодаря новой технологии можно будет воспроизводить наследственные заболевания в лабораторных условиях с воссозданием клеток конкретного пациента, а также испытывать на искусственно выращенных тканях различные методы лечения, чтобы выбрать наиболее действенный.

« Исследователям часто приходится работать в неведении, когда происходят постепенные изменения в ходе гистогенеза и развития сердечной мышечной ткани, поскольку нет легких неинвазивных способов измерения функциональных характеристик ткани, — говорит ведущий автор исследования Йохан Ульрик Линд (Johan Ulrik Lind). — Интегрированные датчики позволяют исследователям постоянно собирать данные в то время, пока ткань созревает и улучшает сократительную способность. »

Создание 3D-моделей органов перед операциями в Дубае

В октябре 2016 года стало известно о том, что в медицинских учреждениях Дубая появятся 3D-принтеры, печатающие точные макеты органов пациентов, которые предстоит оперировать. Благодаря новой технологии планируется повысить точность и эффективность хирургических операций.

Как сообщает издание Gulf News, все больницы, находящиеся под контролем Управления здравоохранения Дубая (Dubai Health Authority, DHA) на территории Объединенных Арабских Эмиратов (ОАЭ), будут оснащаться оборудованием для 3D-печати протезов конечностей и зубов, имитирующих переломы слепки и моделей человеческих органов для имитации операций перед непосредственным операционным контактом с пациентом.

Хирурги Дубая будут тренироваться на 3D-моделях органов перед операциями

По словам вице-президента ОАЭ и правителя Дубая шейха Мухаммеда бин Рашида Аль-Мактума (Mohammed bin Rashid Al Maktoum), эта инициатива ускорит проведение медицинских процедур, сократит расходы и поможет докторам планировать сложные хирургические операции.

« Кроме того, 3D-печать улучшает точность клинической подготовки. Мы будем печатать все модели органов пациентов, используя базовые возможности компьютерной томографии, чтобы помочь врачам имитировать операции и визуализировать всевозможные ситуации, — сообщил Аль-Мактум. »

По его словам, регуляторы ОАЭ работают над тем, чтобы законы соответствовали быстрому развитию технологий объемной печати. Не далек тот день, когда клиенты смогут распечатывать различные предметы в специальных киосках, поэтому очень важно определить четкие правила управления любым видом 3D-печати, добавил шейх.

Использование 3D-принтеров в медицинских целях стало частью стратегии Дубая по развитию 3D-печати, в задачи которой входит превращение города в лидирующий центр этой технологии к 2030 году. Ожидается, что все новые здания в Дубае к этому моменту будут на 25% состоять из деталей, напечатанных на 3D-принтерах. 

Создание и вживление 3D-черепа

В апреле 2016 года стало известно о том, что южнокорейские хирурги смогли напечатать на 3D-принтере модель черепа и использовать его на живом человеке. Операция прошла успешна и помогла спасти человеческую жизнь, говорится в публикации на сайте 3Dprint.com.

В больницу при университете Чунан (Chung-Ang University) в Южной Корее поступила 60-летняя пациентка с жалобой на внезапную головную боль. У нее диагностировали субарахноидальное кровоизлияние. После тщетных попыток остановить смертельное кровотечение врачи приняли решение удалить часть черепа, чтобы уменьшить давление на мозг, вызванное его отеком.

 

В Южной Корее успешно пересадили напечатанный на 3D-принтере череп

Во время операции в месте удаленной части черепа возникла недостаточность кровоснабжения мозга, в результате чего потребовалась пересадка черепа. В итоге было принято решение об имплантации трехмерной модели черепной коробки.

Доктора больницы привлекли специалистов Корейского института промышленных технологий в провинции Канвондо. Они сканировали черепную коробку пациентки при помощи компьютерной томографии и создали точную трехмерную копию органа. При помощи специального оборудования модель была распечатана. Ее изготовили из чистого титана, который принято считать одним из лучших материалов для создания имплантов. Этот металл является легким, прочным и инертным, он имеет низкую вероятность отторжения организмом.

Операция по вживлению напечатанного на 3D-принтере черепа завершилась успешно. Профессор отделения нейрохирургии университета Чунан Квон Чжонтек (Kwon Jeong-tek) отметил, что создание синтетических имплантов и металлических пластинок, используемых для соединения костных отломков, давно применяется для замены элементов черепа человека, однако данная технология всегда была несовершенной. [9]

САПР для 3D-печати в медицине

На вебинаре, который провела организация Society for Imaging Informatics in Medicine (SIIM) в конце марта 2016 года, доктор Университета Юты Джастин Крамер (Justin Cramer) перечислил основные программные продукты, которые могут использоваться для трехмерной печати в медицине.

  • Horos. Это бесплатная программа для просмотра рентгеновских снимков, а также изображений, полученных в результате магнитно-резонансной томографии и компьютерной томографии. Этот продукт с открытым исходным кодом имеет достаточно продвинутую функциональность в части 3D-рендеринга, в том числе инструмент визуализации поверхностей. Файлы могут быть экспортированы в формат STL для вывода на 3D-печать. Недостатком Horos является отсутствие возможности сегментации изображения — разделения на пиксели с целью упрощения и/или изменения представления снимка, чтобы его было легче анализировать, сказал Крамер.

Напечатанный на 3D-принтере протез руки

  • Blender. Это приложение также имеет открытый исходный код, а его одним из главных достоинств является очень активное интернет-сообщество, которое постоянно разрабатывает новые дополнения для этого продукта. Он функциональнее Horos, но труднее в освоении, подмечает Джастин Крамер.
  • SketchUp. Программа позволяет моделировать различные трехмерные объекты и имеет достаточно широкие возможности. Для Крамера наибольшую пользу представляет функция конвертирования STL-файлов в формат Collada, с которым совместимо приложение Apple iBooks. SketchUp когда-то распространялся бесплатно, но к апрелю 2016 года он стоит $695. Образовательные учреждения (или те, у кого есть доступ к электронной почте в домене .edu) могут бесплатно скачать специальную версию программы.
  • Materialise. Сам Университет Юты, известный своими достижениями в области трехмерной печати, пользуется САПР бельгийской компании Materialise. Речь идет о программе для обработки изображений Mimics и продукте 3-matic. Последний позволяет изменять геометрию, перестраивать сетку и создавать трехмерные текстуры, легкие конструкции и конформные структуры на уровне STL, готовя компьютерные модели для 3D-печати.

При выборе софта для 3D-принтеров Джастин Крамер рекомендует руководствоваться простым правилом: для начинающих подойдут бесплатные варианты, но если планируется создавать точные анатомические модели для профессионального использования, то лучше приобрести мощный платный продукт, поскольку с его помощью можно создавать более качественную модель.

Разработки Университета Юты: дешёвая 3D-печать методом наплавления

В конце марта 2016 года медицинская организация Society for Imaging Informatics in Medicine (SIIM) провела вебинар, в ходе которого радиологи из Университета Юты рассказали о возможностях своей новой лаборатории для 3D-печати. Ее особенностью является использование недорогого оборудования.

Для трехмерной печати было выбрано моделирование методом наплавления (FDM). Технология предполагает создание трехмерных объектов за счет нанесения последовательных слоев материала, повторяющих контуры цифровой модели.

Трехмерная модель позвоночника (слева), напечатанная на 3D-принтере

По словам доктора наук из Университета Юты Эдварда Квигли (Edward Quigley), метод наплавления является универсальным и дешевым способом создания объемных объектов, именно поэтому его часто используют для разработки медицинских 3D-принтеров начального уровня.

В Университете Юты сконструировали на основе FDM дешевый принтер, позволяющий печатать хрупкие и сложные анатомические модели, применяемые для образовательных целей. Для получения более точных и наглядных прототипов специалисты добавили в оборудование режимы цветной печати. Однако несмотря на все достижения процесс моделирования остается нелегким: очень часто происходит большой сбой, в результате которого 24-часовая печать объекта заканчивается лишь кучей расплавленного пластика, сетует Квигли.

Впрочем, были и успешные эксперименты в университете. Один из них изображен на иллюстрации выше. На картинке слева можно видеть напечатанную на 3D-принтере нейлоновую модель, демонстрирующую шейные позвонки, позвоночные артерии, дуральный мешок и спинной мозг. Справа показана виртуальная версия, на основе которой создавался физический прототип.

Эдвард Квиглин отметил, что 3D-печать может использоваться для проведения исследований, интраоперационного планирования операций, в сердечно-сосудистой и легочной хирургии. Такие технологии особенно полезны в травматологии, а также могут применяться, к примеру, для создания направляющей для биопсийной иглы или направляющей втулки для сверления зубов, добавил он.

 

Источник:  zdrav.expert

 

Назад
 

19.10.2024 Южнокорейская HAEAHN разработала мастер-план медкластера в Новом Ташкенте стоимостью $500 млн
Компания из Южной Кореи HAEAHN Architecture разработала мастер-план медицинского кластера на 420 га в...

18.10.2024 Видеоинтервью: Медицина как бизнес, самодиагностика и самолечение
Мы всегда знаем, какой врач нам нужен, хотя к узким специалистам пациентов направляет терапевт. Но мало...

18.10.2024 Дети с инвалидностью будут учиться в юридических техникумах бесплатно
Принято постановление Кабинета Министров Республики Узбекистан «О внесении изменений и дополнений в некоторые...